
 1

Advances in Accounting Behavioral Research, vol. 3, Jai Press Inc., Stamford, 
Connecticut, 2000, pp. 225-242. 
 

Belief Functions in Accounting Behavioral Research 
 
 
 
 
 
 

Rajendra P. Srivastava 
Ernst & Young Professor of Accounting and Director 

Ernst & Young Center for Auditing Research and Advanced Technology 
School of Business, The University of Kansas 

Lawrence, Kansas 66045 
Phone: (785) 864-7590, Fax: (785) 864-5328 

email: rajendra@falcon.cc.ukans.edu 
 
 
 

and 
 
 

Theodore J. Mock 
Arthur Andersen Alumni Professor of Accounting 

Leventhal School of Accounting 
University of Southern California 

Los Angeles, CA  90089-1421 
and 

Professor of Audit Research 
University Maastricht 

Phone: (213) 740-4861, Fax:   (213) 747-2815 
email: ted.mock@marshall.usc.edu 

 
 

24 Feb 2000 
 

Forthcoming in 
Advances in Accounting Behavioral Research 

 
 

mailto:rajendra@falcon.cc.ukans.edu
mailto:tmock@sba2.usc.edu


 2

Belief Functions in Accounting Behavioral Research 
 

ABSTRACT 

 Behavioral accounting research deals with a complex set of phenomenon 
including the broad domain of human decision making under uncertainty. Two aspects of 
decision making of particular relevance to accounting and auditing research are two 
constructs that are inexorably interrelated: uncertainty and information (evidence). This 
paper introduces a theoretical perspective that enriches the knowledge-set that may be 
used in behavioral accounting research when confronting decision contexts that involve 
uncertainly. 

 The main body of the paper is an introduction to Belief Functions. The 
introduction includes a discussion of the fundamental constructs and then illustrates the 
use of belief functions in two audit settings: traditional financial statement audit planning 
and the evaluation of evidence in a cascaded-inference setting involving the evaluation of 
internal accounting control. The paper concludes with a brief exploration of some of the 
research issues and opportunities that are related to the potential use of belief functions in 
Behavioral Accounting Research.               
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I. INTRODUCTION 

 

 

 

 

Human decision-making is a complex process, especially in situations where 

significant ambiguity exists. Ambiguity and uncertainty1 are inherent characteristics of 

tasks in all disciplines whether it is accounting, auditing, law, or medicine. The primary 

objective of this paper is to consider some important aspects of belief formulation within 

the context of behavioral accounting research. 

There are two major issues when it comes to dealing with belief formulation 

under ambiguity and uncertainty. The first issue deals with the framework that can be 

used to express or measure uncertainty and ambiguity present in the task setting. Shafer 

and Tversky (1985) and Shafer and Srivastava (1990) describe this process of choosing a 

framework as a process of choosing a “formal language” or “semantics” to express the 

uncertainties in analyzing a task. They argue that the context and the domain of the 

problem determine what language is appropriate.  

                                                 
1 In general, uncertainty deals with situations where one is not sure about the outcome of an event. For 
example, consider an urn with 100 balls, 50 red and 50 black. The outcome whether the color would be red 
or black of a ball being picked from this urn is not sure. Given only two possible outcomes (red or balck) 
with equal likelihood (50 red and 50 black balls), one can make a judgment that each outcome has a 50-50 
chance of occurring. Ambiguity, on the other hand, deals with those situations of uncertainty where one is 
not even able to make that judgment about the likely chance of each outcome to occur. For example, 
suppose you have a second urn with 100 balls of red and black color, but you are told that the proportion of 
red and black balls is not known. It may be in any proportion; from all being red to all being black. Einhorn 
and Hogarth (1986) call the situation of urn one a situation of complete knowledge and the situation of the 
second urn a situation of complete ambiguity or no knowledge.   

The refusal to choose is a form of choice; 

Disbelief is a form of belief.       -Frank Barron 
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The second issue deals with the calculus or “syntax” (Shafer and Tversky 1985) 

through which we combine information to make an overall judgment or decision. There 

are many frameworks and formal languages that can be used to represent uncertainties 

such as those based on probability theory, fuzzy logic, possibility theory (Zadeh 1978, 

1979), belief functions (Shafer 1976, Smets 1990a, 1990b, 1998, Yager et. al 1994), and 

epistemic belief functions (Spohn 1990, 1998).  These frameworks have different 

characteristics and thus seem to “work better” in certain problem domains than in other 

domains.  

For example, Srivastava and Shafer (1992) and Akresh et al. (1988) argue that 

belief functions provide a more flexible and adaptable way to combine evidence from a 

variety of sources. One aspect of this flexibility is that the belief function framework 

reduces to the Bayesian framework under a special condition (Shafer and Srivastava 

1990).  

More importantly, belief functions provide a superior way of mapping uncertainty 

judgments in accounting and auditing (Harrison 1999), and incorporating ambiguity 

within the decision-making (Srivastava 1997a) process. For example, suppose the auditor 

has obtained and assessed inherent factors for a client such as its business environment, 

its economic condition, and the CEO’s honesty and integrity.  Assume that all of these 

factors provide positive evidence to the auditor that the financial statements are fairly 

stated. Based on this, the auditor could attribute a low level of support, say 0.2 on a scale 

of 0-1, that the financial statements are fairly stated, a zero level of support that the 

financial statements are materially misstated, and a 0.8 level of uncommitted support.  
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Such a representation of uncertainty is difficult under the probability framework, as it is 

unclear as to how the uncommitted support (the ambiguity) should be treated.  

Thus an advantage of using belief functions in behavioral research is that it 

provides a more natural and logical way to model ambiguity compared to the probability 

framework. To further illustrate this point, let us consider the urn example introduced in 

footnote 1.  

In this example, a decision-maker is considering two urns – Urn One has an 

unknown distribution of red and black balls and Urn Two is known to have an equal 

number of red and black balls. Under the probability framework, one often assumes 

uniform priors in situations of ambiguity such as Urn One. Thus in either situation, using 

the probability framework, one would assign 0.5 that a drawn ball would be red or black.   

In an experimental context, this feature of the probability framework of not being able to 

distinguish between the two urns has led Einhorn and Hogarth (1986, p. S228) to observe 

a behavioral incongruity:  

... either urn 2 has complementary probabilities that sum to more than one, 
or urn 1 has complementary probabilities that sum to less than one.  As we 
will show, the nonadditivity of complementary probabilities is central to 
judgments under ambiguity. 

Srivastava (1997a) has shown that no such super- or sub-additivity is needed to 

explain the decision maker's behavior if belief functions are used to treat ambiguity. This 

will be further elaborated in the paper later. 

Representation of ignorance is another area where probability framework has 

problems, and leads to illogical implications, especially in an audit context. Consider an 

example where the auditor is trying to make a judgment about the probability of whether 
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the total value of the inventory items stored at two locations is materially misstated. 

Suppose the auditor starts with no knowledge about the state of the inventory at the two 

locations, i.e., the auditor is completely ignorant about the state of the inventory. Under 

probability framework, if uniform priors are assumed, the auditor would assume a 50-50 

chance of the inventory at the two locations to be fairly stated, ‘f’, and materially 

misstated, ‘~f’, i.e., P(f1) = 0.5, P(~f1) = 0.5, P(f2) = 0.5, and P(~f2) = 0.5, where subscript 

1 and 2 stand for the two locations. If we further assume that the combined inventory is 

fairly stated only when the inventory at both the locations are fairly stated, then this 

situation yields a probability of 0.25 that the combined inventory is fairly stated and 0.75 

that the combined inventory is materially misstated2. This seems to be illogical. Since we 

started with ignorance for the inventory at the two locations, we should end up with 

ignorance about the state of the inventory even after combining which is not the case. We 

seem to have more knowledge about the state of the combined inventory. In fact, the 

situation would be more confusing if we consider more locations. We will show later 

how a belief function treatment avoids this problem. 

The main purposes of this article are to introduce belief functions (Shafer 1976, 

Smets 1990a, 1990b, 1998) and then to consider their application to decision-making in 

accounting and auditing. We will first introduce belief functions and discuss how belief 

functions help to overcome certain problems inherent in the use of probabilities. The 

                                                 
2 The combined inventory is fairly stated only when inventory at the two locations are fairly stated, i.e., = 
f12 = f1∩f2. The combined inventory is materially misstated under the following conditions: inventory at 
only one location is materially misstated or inventory at both locations are materially misstated. This 
condition yields P(f12) = P(f1∩f2) = P(f1)P(f2) = 0.5x0.5 = 0.25, and P(~f12) = 
P((~f1∩f2)∪ (f1∩~f2)∪ (~f1∩~f2)) = P(~f1)P(f2) + P(f1)P(~f2) + P(~f1)P(~f2) = 0.5x0.5 + 0.5x0.5 +0.5x0.5 = 
0.75. In the above argument, we have assumed that there are no off setting errors. 
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paper concludes with a discussion of several studies that have used belief functions in 

auditing (and accounting) research and of research opportunities. 

II. INTRODUCTION TO BELIEF FUNCTIONS 

The belief-function formalism is not new. It has its origin in the seventeenth 

century work of George Hooper and James Bernoulli (Shafer 1986, see also Gabbay and 

Smets 1998, Shafer 1976, Shafer and Srivastava 1990, Smets 1998, 1990a, 1990b, and 

Yager et. al 1994). It is based on the mathematical theory of probability similar to the 

Bayesian formalism. Also, the belief-function formalism reduces to the Bayesian 

formalism under a special condition, as discussed later. Here we will present the basics of 

belief functions (see also Srivastava 1993).  

There are three basic functions that are important to understand the use of belief 

functions in a decision-making process: basic belief mass functions or m-values, belief 

functions, and plausibility functions. We discuss each of these functions below. 

Basic Belief Mass Function (m-values) 

The basic belief mass3 function (or m-values) is similar to the probability 

function. Let us consider an example to illustrate the properties of this function. Consider 

a decision problem with n possible elements or states of nature forming a mutually 

exclusive and exhaustive set represented by {a1, a2, a3, … an}. We call this set a frame 

                                                 
3 Shafer calls this function the basic probability assignment function. 
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and represent it by the symbol Θ. Under the probability framework, we assign 

probabilities to each state of nature and these probabilities must add to one4.  

Under the belief function framework, basic belief masses or m-values are 

assigned not only to each state of nature but also to all possible combinations of these 

states of nature. For example, m-values are assigned to all the single elements, to all the 

subsets consisting two elements, three elements, and so on, and to the entire frame Θ. 

Similar to probabilities, these m-values add to one5. We will consider Shafer’s belief-

function framework where the basic belief mass assigned to the empty set is zero by 

definition6. 

Let us consider an auditing example to help us understand the basic concepts of 

m-values. Suppose an auditor has performed certain ratio and trend analyses pertinent to 

the accounts receivable balance and has decided that the analyses provide a positive but 

low level of belief, say 0.2 on a scale of 0 - 1, that the account balance is fairly stated. If 

the state that the accounts receivables balance is fairly stated is represented by ‘a’ and the 

state that the account balance is materially misstated by ‘~a’ then we have the following 

basic belief masses, i.e., m-values: m(a) = 0.2, m(~a) = 0, and m({a,~a}) = 0.8, and the 

sum is one.  

In an audit context, one can interpret these m-values as the level of support 

directly obtained from the evidence for the argument of the m-value function. For 

                                                 
4  Probability mass assigned to each state of nature, ai, is P(ai) ≥ 0 where i = 1, 2, … n and the sum of all 

these probabilities is equal to one, i.e., 
n

i
i=1

P(a ) 1=∑   . 

5 The sum of all the basic belief masses also is equal to one, i.e., 
A

m(A) 1
⊆Θ

=∑ , where A represents all the 

subsets of the frame. 
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example, in the above case, we have direct ratio and trend analysis evidence that the 

account is fairly stated with 0.2 level of belief, no belief that the account is materially 

misstated, and 0.8 belief still uncommitted. This 0.8 is assigned to the entire frame Θ = 

{a, ~a}. Note that in this example, the evidence is “positive” in that it supports the 

hypothesis that the accounts receivable is fairly stated.  

A negative piece of evidence is represented by a finite (non-zero) belief mass 

assigned to ‘~a’ that the account is materially misstated. Suppose that the ratio and trend 

analyses considered in the above example signal that the account balance may be 

materially misstated but with a low level of support, say 0.1, for ~a and no evidence that 

the account balance is fairly stated. This situation can be written as: m(a) = 0, m(~a) = 

0.1, and m({a, ~a}) = 0.9.  

Mixed audit evidence can be expressed by assigning some basic belief mass to 

‘a’, some to ‘~a’, and some to the entire frame Θ = {a, ~a}.  An example of mixed 

evidence is where part of the support, say 0.2, is for ‘a’, 0.1 for ‘~a’, and the remaining, 

0.7 is assigned to {a, ~a}. In terms of m-values, one can express this evidence as: m(a) = 

0.2, m(~a) = 0.1, and m({a, ~a}) = 0.7. This kind of evidence is not easy to model under 

the probability framework. 

There are two ways one can assess these basic belief masses or m-values. The 

first approach is through the decision maker’s (i.e. auditor’s) subjective judgment as 

illustrated above. This judgment could be based on the experience or other knowledge.  

The second approach is based on the compatibility relationship between two 

frames. Suppose the decision-maker is interested in making a decision in one frame but 

                                                                                                                                                 
6 Under Transferable Belief Functions of Smets (1990a, 1998), one can assign a non-zero mass to the 
empty set. 
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has no prior knowledge about the probability distribution of the possible outcomes in this 

space. However, assume the auditor has knowledge about the probability distribution on 

another frame that is compatible to the frame of interest. This compatible relationship 

may help the decision maker make inferences about the frame of interest from the 

knowledge of the probability distribution on the other frame. As an illustration let us 

consider the following situation. 

The auditor asks the manager of a business unit whether his unit follows certain 

important control procedures and in response the management says, “Yes, we do follow 

the procedures.” The question is what would be the level of belief that the unit follows 

the control procedures? Before we answer this question let us consider that the auditor 

knows this manager and thinks that the manager is trustworthy about 80 percent of the 

time and remaining 20 percent of the time he is not trustworthy. The auditor has the 

following probability distribution on this frame, {t, ~t}, where t = ‘the manager is 

trustworthy” and ~t = ‘manager is not trustworthy”: P(t) = 0.8, and P(~t) = 0.2.  

Assume this frame is compatible to the frame of interest {c, ~c} where c = ‘Unit 

follows the control procedures’ and ~c = ‘Unit does not follow the control procedures’. 

Assume further that the compatibility relationship is not necessarily one-to-one. If the 

manager is trustworthy when he says that the controls are being followed then the 

controls are being followed, i.e., ‘t’ is compatible to ‘c’. However, when the manager is 

not trustworthy, the controls may or may not be followed, i.e., ‘~t’ is compatible to the 

frame {c, ~c}. This compatibility relationship yields the following belief masses (see 

Figure 1): P(t) = 0.8 → m(c) = 0.8, and P(~t) = 0.2 → m({c,~c}) = 0.2 and we have no 

belief that controls are not being followed, i.e., m(~c) = 0.  
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------------- Figure 1 about here ------- 

Belief Function 

Belief on a set of elements, say, A of a frame Θ is defined as the total belief on A. 

This represents the sum of all the basic belief masses assigned to the elements contained 

in A plus the basic belief mass assigned to A7. Let us consider the example discussed 

earlier where the auditor has performed analytical procedures in testing the accounts 

receivable balance and based on the findings he concludes that the evidence provides a 

low level of support, say 0.2, that accounts receivable balance is fairly stated, no support 

for the account to be materially misstated, with 0.8 level of belief uncommitted. In terms 

of basic belief masses, one can write the auditor’s judgment as: m(a) = 0.2, m(~a) = 0, 

and m({a, ~a) = 0.8.  

Using the definition of belief functions as described above (see also footnote 8), 

the belief that the accounts receivable is fairly stated is 0.2, belief that the account is 

materially misstated is 0, i.e., Bel(a) = 0.2, and Bel(~a) = 0. Also, we have a belief of one 

in the entire frame, i.e., Bel({a, ~a}) = 1.0. This value is obtained as follows. According 

to the definition, the belief in a set A, say A = {a, ~a}, is the sum of the basic belief 

masses on all the subsets contained in A, and the belief mass on the entire set A. In our 

example, this definition implies that the belief on {a, ~a}, Bel({a,~a}), is the sum of the 

basic belief masses on ‘a’, ‘~a’, and {a, ~a}, i.e., the sum of m(a) = 0.2, m(~a) = 0, and 

m({a, ~a}) = 0.8, which is one in the present example. 

                                                 
7 Mathematically this can be written as: 

B A

Bel(A) = m(B)
⊆
∑ , where B is any subset of A. 



 12

Plausibility Function 

The plausibility of an element or a set of elements, say A, of a frame, Θ, is 

defined to be the maximum possible belief that could be assigned to A if all future 

evidence were in support of A8. Consider the above example of analytical procedure with 

the basic belief masses: m(a) = 0.2, m(~a) = 0, and m({a, ~a}) = 0.8. This evidence 

provides a belief of 0.2 that the account is fairly presented. However, 0.8 level of belief 

which is assigned to the entire frame, {a, ~a}, is in principle uncommitted. In the best 

possible scenario, if new pieces of evidence provided only positive support then all of 

this uncommitted belief could be assigned to ‘a’. This provides the following value for 

plausibility of ‘a’: Pl(a) = 0.2 + 0.8 = 1.0. Similarly, in the other extreme case, if new 

pieces of evidence provided support to only ‘~a’ then the uncommitted belief of 0.8 could 

be assigned to ‘~a’ yielding a 0.8 level of plausibility for ‘~a’, i.e.,  Pl(~a) = 0.8.  

Ambiguity Function 

In belief functions, the ambiguity in a state A is defined (Srivastava 1997a, Wong 

and Wang 1993) as the difference between the plausibility of A and the belief in A, i.e.,  

Ambiguity in A = Pl(A) – Bel(A) 

In the above example, the belief that the account is fairly stated in 0.2 and its plausibility 

is 1.0. Therefore, the ambiguity in ‘a’ that the account is fairly presented is 0.8 

(Ambiguity in ‘a’ = Pl(a) – Bel(a) = 1.0 – 0.2 = 0.8). Similarly, the ambiguity in ~a is 0.8. 

                                                 
8 Mathematically one can write plausibility as Pl(A) =

A B

m(B).
∩ ≠∅
∑  Also, one can show that the 

plausibility function is related to the belief function through the following relationship: Pl(A) = 1- Bel(~A). 
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Consider now the example of two urns discussed earlier as considered by Enhorn 

and Hogarth (1986). Urn 1 (Ambiguous) is the urn with 100 balls of black and red color 

with no knowledge of the proportion of red and black balls. Urn 2 (Known) is the urn 

with complete knowledge that it contains 100 balls of 50 red and 50 black colors. The 

belief mass that a red ball is picked from Urn 1 is zero and similarly a belief mass that a 

black ball is picked is zero, i.e., m1(red ball) = 0, and m1(black ball) = 0 where the 

subscript represents the urn number. These values suggest that we have no direct 

evidence whether the ball picked will be of red or black color. The plausibility of picking 

a red ball would be one and similarly the plausibility of picking a black would be one. 

Thus, the ambiguity that the ball would be of red color is one (completely ambiguous) 

and so is the ambiguity that the ball would be of black color. However, in the case of Urn 

2, the belief masses are: m2(red ball) = 0.5, and m2(black ball) = 0.5, and the 

corresponding beliefs and plausibilities are: Bel(red ball) = Bel(black ball) = 0.5, and = 

Pl(red ball) = Pl(black ball) = 0.5. In this case the ambiguity that a red ball is picked is 

zero and the ambiguity that a black ball is picked is also zero. Under the belief-function 

framework we see that the two urns are represented very differently. 

III.  ILLUSTRATIONS OF THE USE OF BELIEF FUNCTIONS IN AUDITING 
RESEARCH 

In behavioral accounting and auditing research, research that considers 

uncertainly is rarely useful unless it can be applied to specific tasks. In this section we 

discuss two applications. The first application deals with the planning and evaluation of 

an audit as discussed by Srivastava and Shafer (1992) and Srivastava et. al (1996). The 

second application deals with belief revisions by auditors as studied by Krishnamoorthy, 
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Mock & Washington (1999).  Belief functions tend to have the following advantages over 

probability framework in these contexts 

1. The audit risk model is a plausibility model (Srivastava and Shafer 1992) and a belief 
function interpretation of the components of the audit risk model makes more 
intuitive sense (see further discussions in the next section) 9. 

2. There is some evidence that a judgment about the basic assessment of the strength of 
evidence using a belief function framework is more intuitive (Harrison 1999, and 
Golden an Curly 1995).  

3. Representation of positive, negative, and mixed items of evidence is more convenient. 
For example, positive evidence in support of an audit objective ‘o’ can be expressed 
in terms of a non-zero m-value, say 0.2, for ‘o’ and zero value for ‘~o’, i.e., m(o) = 
0.2, m(~o) = 0, m({o, ~o}) = 0.8. A negative item of evidence would be represented 
by a non-zero m-value for ‘~o’, say 0.1, a zero value for ‘o’, i.e., m(o) = 0, m(~o) = 
0.1, and ({o, ~o}) = 0.9. A mixed item of evidence can be expressed by assigning a 
non-zero m-value for both ‘o’ and ‘~o’, i.e., m(o) ≠ 0, and m(~o) ≠ 0. As an 
illustration, we can express a mixed item of evidence as m(o) = 0.3, m(~o) = 0.1, and 
m({o, ~o}) = 0.6. 

4. Representation of different levels of assurance coming from the same item of 
evidence for two different audit objectives is expressed more conveniently. For 
example, in the case of a confirmation test, assume that the auditor finds that all the 
respondents have said that they owe money to the company, but some of them have 
made comments that their account balance is overstated. Based on this information 
the auditor’s judgment is that a high level of support, say 0.8, is obtained for 
‘existence’ objective (e) and a medium level of support, say 0.6, is obtained for 
‘valuation’ objective (v). This can be expressed in terms of m-values as: m(e) = 0.8, 
m(~e) = 0, m{(e, ~e}) = 0.2, and m(v) = 0.6, m(~v) = 0, m({v, ~v}) = 0.4. 

Audit Planning and Evaluation: Issues in the Combination of Evidence 

The audit risk model of SAS 47 (AICPA 1983) has been proposed to be a 

framework that can be used for planning an audit. The model has been criticized on a 

                                                 
9 The audit risk model of SAS 47 is AR = IR×CR×DR, where AR is the risk that the auditor gives a clean 
opinion but the financial statements may contain material misstatements. IR, CR, and DR are respectively 
inherent risk, control risk and detection risk (see SAS 47 for definitions). SAS 47 suggests that if the 
auditor does not want to depend on the environmental factors then he should set IR to one and plan the 
audit based on the assessed control risk and planned detection risk. Under probability framework, IR = 1 
implies that the auditor is assuming that there are material errors in the financial statement for sure, but that 
is not the auditor’s thinking when he sets IR = 1. Under belief functions, IR = 1 implies that plausibility of 
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number of grounds, including Srivastava and Shafer (1992) who argued that the risks in 

the model really imply plausibility of material misstatements instead of probability of 

material misstatements. They argue that the plausibility interpretation of the risks in the 

audit risk model makes intuitive sense. Our first example of the use of belief functions in 

accounting and audit research reviews this idea. 

The external auditor plans the audit to be able to reach an opinion considering the 

possibility of existence of material errors in the financial statements. If no material 

misstatements are found and the evidence supports the opinion that the financial 

statements are fairly stated with a high level of confidence, say 0.95, then the auditor 

issues a clean opinion. Given the earlier definition of plausibility, this implies that the 

plausibility of material misstatement is 0.05. This plausibility can be interpreted, as the 

maximum possible risk the auditor is willing to take that the financial statements might 

be materially misstated without giving a qualified opinion. Note that this interpretation 

does not imply that there is any evidence in support of material misstatements. 

The audit process is a process of collecting, evaluating, and aggregating evidence. 

Srivastava and Shafer (1992) have shown analytically how one can combine positive 

items of evidence accumulated with respect to various accounts within the balance sheet. 

Srivastava et. al (1996, see also Srivastava 1995a, 1995b) have discussed the aggregation 

of evidence in a complex network of variables, where the variables are the balance sheet, 

the balance sheet accounts, and the audit objectives or the management assertions 

concerning the accounts. A network structure arises when one piece of evidence supports 

more than one audit objective or more than one account. For example, confirmations of 

                                                                                                                                                 
material errors present in the financial statements is one, however, there is no evidence in support or against 
the financial statements being fairly stated.   
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accounts receivable pertain to the existence and valuation objectives of the account. We 

will demonstrate below through a simple example how two items of positive evidence 

can be combined in the belief-function framework.  

Suppose that the auditor assesses a low level of belief, say 0.1 on a scale of 0–1, 

that the financial statements are fairly stated based on evidence concerning environmental 

factors, such as the economic conditions under which the client operates, the 

administrative style of the CEO, and the CEO’s integrity. Assume there is no reason to 

believe that the financial statements are materially misstated given the economic 

conditions and a trustworthy CEO with integrity. These inherent factors (IF) yield the 

following m-values: mIF(f) = 0.1, mIF(~f) = 0, and mIF({f,~f}) = 0.9, where ‘f = financial 

statements are fairly stated’, and ‘~f = financial statements are not fairly stated’.  

Suppose the auditor collects additional evidence by performing analytical 

procedures, such as comparing this year’s financial statement balances with last year’s 

balances and computing various ratios. Assume that the auditor again assesses a low, but 

positive, level of support, say 0.2 on a scale of 0–1, that the financial statements are fairly 

stated based on this evidence. Assume also that the analytical procedures provide no 

reasons to believe that there is material misstatement in the financial statements. This 

judgment about analytical procedures (AP) may be expressed in terms of the following 

basic belief masses or m-values as: mAP(f) = 0.2, mAP(~f) = 0, and mAP({f, ~f}) = 0.8. 

We have the following beliefs for ‘f’ and ‘~f’ from the first piece of evidence, the 

inherent factors: BelIF(f) = 0.1, BelIF(~f) = 0. The corresponding plausibilities are: PlIF(f) 

= 1.0, and PlIF(~f) = 0.9. The plausibility of material misstatement based on the inherent 

factors is 0.9, although there is no belief that the financial statements are materially 
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misstated. Srivastava and Shafer (1992) showed analytically that the plausibility of 

material misstatements in the financial statements based on inherent factors is equivalent 

to inherent risk (IR). Thus, in the current example IR = 0.9. Conceptually, this is 

equivalent to saying that the auditor has 0.1 level of support from environmental factors 

that the financial statements are fairly stated and 0.9 level of maximum possible support 

that the financial statements could be materially misstated,even though there is no 

evidence that they are materially misstated. 

Similarly, the beliefs and plausibilities for ‘f’ and ‘~f’ based on the analytical 

procedures are: BelAP(f) = 0.2, BelAP(~f) = 0, PlAP(f) = 1.0, and PlAP(~f) = 0.8. This 

means that the auditor has direct evidence from analytical procedures that the financial 

statements are fairly stated with 0.2 degree of belief, no evidence and thus zero belief for 

material misstatement, and 0.8 level of plausibility that material misstatement could exist 

(even though there is no direct evidence of misstatement). Similar to the prior case, a 

plausibility of 0.8 that the financial statements are materially misstated represents the risk 

associated to analytical procedures as considered in SAS 47. 

One of the difficulties in actual audits is the combination of various items of 

evidence, such as those discussed above. Using belief functions, one would use 

Dempster’s rule of combination10. In the above example, we have two items of evidence 

with the following m-values:  

mIF(f) = 0.1, mIF(~f) = 0, mIF({f,~f}) = 0.9, 

mAP(f) = 0.2, mAP(~f) = 0, mAP({f, ~f}) = 0.8. 

                                                 
10 Dempster’s rule is similar to Bayes’ rule. In fact, Dempster’s rule reduces to Bayes’ rule under the 
condition where the basic belief masses, i.e., m-values, are assigned to only singletons of the frame (Shafer 
1976). 
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According to Dempster’s rule, we cross multiply all the m-values and assign the 

resulting masses to the intersection of the arguments. In situations where the intersection 

is empty with a finite belief mass (“conflict situations”), we need to renormalize the 

remaining masses (Shafer and Srivastava 1990). In the above case, we do not have any 

conflict. Thus the following are the combined m-values as a result of cross multiplication 

of the two sets of m-values: 

mT(f) = mIF(f)mAP(f) + mIF(f)mAP({f,~f}) + mIF({f,~f})mAP(f) 

= 0.1x0.2 + 0.1x0.8 + 0.9x0.2 = 0.28, 

mT(~f) = mIF(~f)mAP(~f) + mIF(~f)mAP({f,~f}) + mIF({f,~f})mAP(~f) 

= 0 + 0x0.8 + 0.9x0 = 0, 

mT({f,~f}) = mIF({f,~f})mAP({f,~f}) = 0.9x0.8 = 0.72. 

The beliefs and plausibilities are: BelT(f) = 0.28, BelT(~f) = 0, PlT(f) = 1.0, and PlT(~f) = 

0.72. Thus, based on the inherent factors and analytical procedures the auditor has 0.28 

degree of belief that the financial statements are fairly presented.  But there is still 0.72 

degree of plausibility that material misstatements may be present. Usually, the auditor 

will need to collect more evidence to increase the belief that the financial statements are 

fairly stated to a threshold level, say 0.95, or reduce the plausibility of material 

misstatement to 0.05, i.e., reduce the overall audit risk to 0.05 in order to give a clean 

opinion11. Note that, although there is no belief that the financial statements are 

materially misstated, a 0.05 level of plausibility that the financial statements are 

materially misstated represents the maximum possible belief for material errors (a worst 

scenario case) if all additional items of evidence collected provide support for material 

                                                 
11  See Shafer and Srivastava (1990) for an example of the use of Dempster’s rule with conflicting pieces of 
evidence. 
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misstatements. This interpretation of risk is more intuitive than the interpretation 

provided under probability framework. 

The analytical model proposed by Srivastava and Shafer (1992) for combining 

various items of evidence at different levels of the balance sheet is for planning purposes. 

One can also use their model for evaluation purposes, provided all the pieces of evidence 

gathered are positive in nature. This is not the case in general. In fact, in general, the 

auditor may encounter some positive evidence, some negative evidence, and some mixed 

items of evidence. In order to combine evidence from various sources at different level of 

the financial statement, Srivastava et. al (1996) used a software called “Auditor’s 

Assistant” developed by Shafer et. al (1988). This software allows the user to draw the 

evidential network for audit planning and evaluation decisions. Srivastava et al (1996) 

applied the belief function approach for planning and evaluation of an audit of a 

healthcare unit. They showed how one could develop a network of variables with 

accounts and audit objectives and connect various items of evidence to pertinent variables 

(i.e., audit objectives of an account, the accounts on the balance sheet, and the balance 

sheet as whole). 

The inputs to the network are the auditor’s judgments about the planned (or 

achieved) level belief to be obtained (or obtained) from various items of evidence. The 

program would aggregate all the evidence and provide the overall belief at all the 

variables. If the overall belief obtained at the variable of interest, say the financial 

statement, is below the threshold level, say 0.95, the auditor would (1) collect more 

evidence to increase the overall belief to the threshold level and issue an unqualified 

opinion, (2) either issue a qualified opinion or an adverse opinion if the overall belief that 



 20

the financial statements are materially misstated is more than the threshold value, 0.05 in 

the present example, or (3) issue a disclaimer if the auditor is not able to collect further 

evidence. If the overall belief that the financial statements are fairly stated is equal to or 

more than the threshold value then the auditor would not collect any further evidence and 

issue an unqualified opinion. 

Evidential Assessment: Issues in Cascaded Inference Settings  

In this section, we also discuss an audit task where multiple items of evidence 

need to be integrated to assess likelihood of error. The particular setting differs from the 

prior example in that the evidence is “cascaded”, that is knowledge concerning one type 

of evidence (the quality of a client’s system on internal controls) can be interpreted as 

affecting the strength of other audit evidence (an inventory price test). The audit task 

studied (see Krishnamoorthy et al 1999) involves the valuation of a retail store’s 

inventory account.  The context is one where auditors would normally review 

information on the internal control system for the acquisition and payment cycle and then 

ultimately collect and assess the results of tests of inventory details such as an inventory 

price test.  

Given the background and environmental information, auditors would first assess 

the likelihood of material pricing error in the inventory account. This judgment would be 

the auditor’s estimate of material error prior to assessing either internal control or price 

test information. Assume that next an evaluation of internal control system reliability 

would be obtained. For example, the control system reliability might range on a scale 

from 50%  to 100% (completely reliable). A statistical price test could also be obtained. 

In statistical audit testing, the diagnosticity of such tests could be specified in terms of the 
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risk of incorrect rejection or of incorrect acceptance. For example, the parameters used in 

planning the price test sample for the risk of incorrect rejection could be set at 5%, and 

the risk of incorrect acceptance (i.e. test of details risk) might vary from 2% to 20%. The 

test results could indicate a book value sufficiently close to the audited value so that 

either the book value could be accepted or a value that differed from the book value such 

that the book value would seem to be misstated. 

The audit task would then be to reassess the likelihood of material pricing error in 

the inventory account. This decision represents the auditor’s posterior belief and should 

reflect the auditor’s evaluation of the evidence pertaining to internal control system 

reliability aggregated with the evidence pertaining to the price test. 

One important issue in such a context is how an auditor should treat the 

uncertainty confronting him at each decision stage. The way uncertainty is treated has 

implications on how audit evidence ought to be utilized and thus potentially on audit 

efficiency and effectiveness. 

The belief function model for this setting can be summarized as follows (see 

Krishnamoorthy et al 1999 for details).  First, all possible states for the variables in the 

model must be defined, i.e., D (~D) = Pricing test reveals no material error (material 

error); D* (~D*) = Internal Control System is reliable (not reliable); and H1 (H2) = there 

is no material error (material error) in the inventory account. Next, consider frame Θ, a 

set of mutually exclusive and collectively exhaustive set of all possible combinations of 

the variables in the model.  The evidential value (m-values) of the cues relating to the 

price tests and the reliability of the internal control system is propagated by vacuously 

extending the frames ΘD and ΘD* to Θ, and then marginalizing it to the frame of interest 
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ΘH. Vacuous extension is the propagation of m-values from a smaller node (fewer 

variables) to a larger node (more variables). Marginalization refers to the propagation of 

m-values from a larger node to a smaller node (Srivastava 1995b, 340). Finally, prior 

beliefs are updated after a normalization procedure detailed in Shafer (1976). This 

provides the posterior beliefs on frame ΘH. 

To illustrate the model, assume an auditor’s initial belief (prior) for “no material 

pricing error” is 0.75. But, without either internal control evidence or test of details, 

significant ambiguity exits as to whether the remaining probability mass should apply to 

material or no material error. This setting is easily modeled using belief functions as 

follows: m(D) = 0.75; m1(~D) = 0 and m(D,~D) = .25. 

Assume further that the auditor then learns that the internal control system 

reliability is 80% and that the test of details results with risk of incorrect acceptance at 

2% imply that inventory is correctly valued. The following m-values12 then become the 

inputs to the analysis: m1(~D) = 0.02; m1(D) = 0.98; m1(ΘD) = 0; m2(~D*) = 0; m2(D*) = 

0.80; m2(ΘD*) = 0.20; m3(H1) = 0.75; m3(H2) = 0; m3(ΘH) = 0.25.  

In Krishnamoorthy et al (1999), the auditor’s prior was elicited and they then 

mapped the following values into the belief function model: m3(H1) = the elicited prior; 

m3(H2) = 0; and m3(ΘH) = 1- elicited prior. The following posterior beliefs were then 

associated with the hypotheses of interest: 

 m(H1) = 0.945 (belief that there is no material pricing error); 

  m(H2) = 0.004 (belief that there is material pricing error); and  

                                                 
12 Here it is assumed that a 2% risk of incorrect acceptance is equivalent to a belief of 2% to ~D and 80% to 
D. However, one could also use the Srivastava and Shafer (1994, see also Srivastava 1997b) approach of 
converting statistical evidence to belief function evidence.  
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 m(ΘH) = 0.051 (belief in the set consisting of both H1 and H2). 

The key behavioral result of this analysis is a calculation of a theoretical or hypothesized 

amount of belief revision given the evidence obtained. In most behavioral research 

settings, such a calculation is not provided and thus no theoretical benchmark exits with 

which to compare actual behavior. In the setting described above, the belief revision 

(benchmark) predicted by a model based on belief functions would be 0.195. 

 
In Krishnamoorthy et al (1999) this formulation is contrasted with 3 other models 

that also capture the underlying subtleties of the task from different theoretical 

perspectives. Since the theories underlying the models are different, the measure of the 

strength of evidence varies across the models. 

Several important differences exist between the belief function models and the 

other models, including descriptive models such as the Belief Revision model developed 

by Einhorn and Hogerth (1992). For example, there is an explicit parameter in the 

Einhorn and Hogarth model that allows for sensitivity to negative and positive evidence 

(α and β). Unlike heuristic models, theoretic models based on probability theory or on 

the belief function model do not predict differential sensitivity to positive and negative 

evidence, although it is feasible to include such a parameter in the analytical development 

of these models (e.g., Dutta and Srivastava 1992). This and other modeling differences 

are discussed as an avenue for future research in Krishnamoorthy et al. (1999).  

Other Studies  

There are a number of other studies the interested reader can consult to see further 

illustrations of the use of belief functions in behavioral auditing and accounting research. 
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Many of these are listed in our references and are discussed in a forthcoming book 

(Srivastava and Mock 2000). For example, Srivastava and Mock (1999) have recently 

used an evidential reasoning approach based on the belief-function framework for 

WebTrust assurance services (AICPA 1997a, 1997b). They have also applied the 

decision theoretical approach to estimate a minimum acceptable fee based on the costs 

associated with various risks of not meeting the objectives with a belief of 1.0.  

  Srivastava (1996) has used belief functions in value judgments and analyzed the 

impact of framing of evidence on decision-making. As discussed earlier, Srivastava 

(1997a) has also used belief functions to model ambiguity and demonstrated its benefits 

in decision making behavior. 

IV.  CONCLUSIONS 

Ambiguity and uncertainty are common in behavioral auditing and accounting 

research.  However, probability theory does not have a natural, logical way of dealing 

with ambiguity. One common way of dealing with ambiguity in probability is to assign 

uniform priors. This leads to some illogical implications, especially in an audit context.  

An important advantage of a formalism based on belief functions is that it does explicitly 

and logically deal with ambiguity. As shown, this approach can be applied to auditing 

and leads to more logical interpretations of audit risk and evidence. 

Belief functions also have potential use and research implications for behavioral 

accounting research in general. As noted, uncertainty and ambiguity exist and should be 

formally dealt with in managerial, financial and accounting information systems contexts. 
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A number of research opportunities arise with respect to belief functions, especially in 

behavioral accounting research. For example, it would be interesting to see whether 

decision makers tend to think of uncertainty as depicted in the belief-function framework. 

Also, given that some research has shown that judgments about the level of belief in 

support of a given assertion is more natural when beliefs function are used, the basic 

measurement (calibration) issue of the level belief obtained from various types of audit 

evidence is an important area for future research. A related issue is whether decision 

makers are able to combine items of evidence according to Dempster’s rule of 

combination. Lastly, there are a number if issues concerning the efficiency and 

effectiveness of the belief-function framework as compared to other approaches of 

dealing with uncertainty and ambiguity. 
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Figure 1 
Compatibility Relationships Between Two Frames, {t, ~t} and {c, ~c}. 
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