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Belief Function Approach to Evidential Reasoning in Causal Maps 
 
 

Abstract 
 
The purpose of this chapter is to demonstrate the use of evidential reasoning approach under 
Dempster-Shafer (D-S) theory of belief functions to analyze revealed causal maps. Revealed 
causal mapping (RCM) technique, as applied in this chapter, is a qualitative method used to 
develop or extend understanding of a phenomenon within a specific context. The map can be 
used to develop models, either as grounded theory or evocative theory building. The example 
referenced in this study used interview data as the primary source in the RCM method. The 
participants from information technology (IT) organizations provided the concepts to describe 
the target phenomenon of Job Satisfaction; they also identified the associations between the 
concepts. The researchers used coding rules to aggregate similar concepts to produce a 
composite RCM. The researchers proposed potential evidence measures that could be used to 
evaluate the model. This chapter discusses the steps necessary to transform a causal map into an 
evidential diagram. The evidential diagram can then be analyzed using belief functions technique 
with survey data, thereby extending the research from a discovery and explanation stage to 
testing and prediction. An example is provided to demonstrate these steps. This chapter also 
provides the basics of Dempster-Shafer theory of belief functions and a step-by-step description 
of the propagation process of beliefs in tree like evidential diagrams.  
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Belief Function Approach to Evidential Reasoning in Causal Maps 
 

I.  Introduction 

 
The main purpose of this chapter is to demonstrate the use of evidential reasoning 

approach under Dempster-Shafer (D-S) theory of belief functions (Shafer, 1976; see also, 

Srivastava & Datta, 2002; and Srivastava & Mock, 2000, 2002) to analyze revealed causal maps. 

The Revealed Causal Mapping (RCM) technique is used to represent the model of a mental map 

and to determine the constructs or variables of the model and their interrelationships from the 

data. RCM focuses on the cause/effect linkages disclosed by individuals intimately familiar with 

a phenomenon under investigation. The researcher deliberately avoids determining the variables 

and their associations a priori, allowing both to emerge during the discourse or from the textual 

analysis (Narayanan & Fahey, 1990). In contrast, other forms of causal mapping begin with a 

framework of variables based on theory, and the associations are provided by the participants in 

the study (cf. Bougon, et al., 1977). 

While RCM helps determine the significant variables in the model and their associations, 

it does not provide a way to integrate uncertainties involved in the variables or to use the model 

to predict future behavior. The evidential reasoning approach provides a technique where one 

can take the RCM model, convert it into an evidential diagram, and then use it to predict how a 

variable of interest would behave under various scenarios. An evidential diagram is a model 

showing interrelationships among various variables in a decision problem along with relevant 

items of evidence pertaining to those variables that can be used to evaluate the impact on a given 

variable of all other variables in the diagram. In other words, RCM is a good technique to 
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identify the significant constructs (i.e., variables) and their interrelationships relevant to a model, 

whereas evidential approach is good for making if-then analyses once the model is established.  

There are two steps required in order to achieve our objective. One is to convert the RCM 

model to an evidential diagram with the variables taken from the RCM model and items of 

evidence identified for the variables from the problem domain. The second step is to deal with 

uncertainties associated with evidence. In general, uncertainties are inherent in RCM model 

variables. For example, in our case of IT professionals’ job satisfaction, the variable “Feedback 

from Supervisors/Co-Workers” partly determines whether an individual will have a “high” or 

“low” level of satisfaction. However, the level of job satisfaction will depend on the level of 

confidence we have in our measure of the variable. The Feedback from Supervisors/Co-Workers 

may be evaluated through several relevant items of evidence such as interviews or surveys. In 

general, such items of evidence provide less than 100% assurance in support of, or negation of, 

the pertinent variable. The uncertainties associated with these variables are better modeled under 

Demspter-Shafer theory of belief functions than probabilities as empirically shown by Harrison, 

Srivastava and Plumlee (2002) in auditing and by Curley and Golden (1994) in psychology. We 

use belief functions to represent uncertainties associated with the model variables and use 

evidential reasoning approach to determine the impact of a given variable on another in the 

model. This combination of techniques adds the strength of prediction to the usefulness of 

descriptive modeling when studying behavioral phenomena. Evidential reasoning under 

Dempster-Shafer theory of belief functions thereby extends the impact of revealed causal 

mapping. 

The chapter is divided into eight sections. Section II provides a brief description of the 

Revealed Causal Mapping (RCM) technique. Section III discusses the basic concepts of belief 
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functions, and provides an illustration of Dempster’s rule of combination of independent items of 

evidence. Section IV describes the evidential reasoning approach under belief functions. Section 

V describes a causal map developed through interviews and surveys of IT employees on their job 

satisfaction. Section VI shows the process of converting a RCM map to an evidential diagram 

under belief functions. Section VII presents the results of the analysis, and Section VIII provides 

conclusions and directions for future research. 

II.  Revealed Causal Mapping Technique 

Revealed causal mapping is a form of content analysis that attempts to discern the mental 

models of individuals based on their verbal or text-based communications (Narayanan & Fahey, 

1990; Nelson, et al., 2000; Darais, et al., 2003). The general structure of the causal map can 

reveal a wealth of information about cognitive associations, explaining idiosyncratic behaviors 

and reasoning.  

The actual steps used to develop the IT Job Satisfaction revealed causal map in the 

present paper are outlined in Table 1. The research constructs were not determined a priori, but 

were derived from the assertions in the data. The sequence of steps directly develops the 

structure of the model from the data sample.  

First, a key consideration in using RCM is the determination of source data (Narayanan 

& Fahey, 1990). Since this study assessed the job satisfaction of IT professionals, it was logical 

to gather data from IT workers in a variety of industries. Interviews and surveys were conducted 

with employees of IT departments, and responses were analyzed to produce the model presented 

later in the chapter.  
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Table 1. Steps for Revealed Causal Mapping Technique. 

Step Description 
1 Identify source data. 
2 Identify causal statements. 
3 Create concept dictionary. 
4 Aggregate maps. 
5 Produce RCM and analyze maps. 

Second, the researchers identified causal statements from the original transcripts or 

documents. The third step in the procedure is to combine concepts based on coding rules 

(Axelrod, 1976; Wrightson, 1976), producing a concept dictionary (see Appendix A). Synonyms 

are grouped to enable interpretation and comparison of the resultant causal maps. Care must be 

taken to ensure that synonyms are true to the original conveyance of the participant. For 

example, two interviewees might use different words that hold identical or very similar meanings 

such as “computer application” and “computer program”. In mapping these terms, the links are 

not identical until the concepts are coded by the researcher. It is preferable for investigators to 

ere on the side of too many concepts, rather than inadvertently combine terms inappropriately for 

the sake of parsimony.  

Next, the maps of the individual participants were aggregated by combining the linkages 

between the relevant concepts. The result of this step is a representative causal map for the 

sample of participants. 

RCM produces dependent maps, meaning that the links between nodes indicate the 

presence of an association explicitly revealed in the data (Nadkarni & Shenoy, 2001). The 

absence of a line does not imply independence between the nodes, however. It simply means that 

a particular link was not stated by the participants. This characteristic of RCM demonstrates the 

close relationship of the graphical result (map) to the data set. Therefore, it is vital that the 
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sample be representative of the population of interest. The following section introduces belief 

functions and the importance of evidential reasoning in managerial decision making. 

III.  Dempster-Shafer Theory of Belief Functions 

Dempster-Shafer (D-S) theory of belief functions, which is also known as the belief-

function framework, is a broader framework than probability theory (Shafer and Srivastava 

1990). Actually, Bayesian framework is a special case of belief function framework. The basic 

difference between the belief-function framework and probability theory or Bayesian framework 

is in the assignment of uncertainties to a mutually exclusive and collectively exhaustive set of 

elements, say Θ, with elements, {a1, a2, a3, … an}. This set of elements, Θ = {a1, a2, a3, … an}, is 

known as a frame of discernment in belief-function framework.  In probability theory, 

probabilities are assigned to individual elements, i.e., to the singletons, and they all add to one. 

For example, for the frame, Θ = {a1, a2, a3, … an}, with n mutually exclusive and collectively 

exhaustive set of elements, ai’s, with i = 1, 2, 3, … n, one assigns a probability measure to each 

element, 1.0 ≥ P(ai) ≥ 0, such that 
n

i=1
P( ) 1ia =∑ .0. Under belief functions, however, the 

probability mass is distributed over the super set of the elements of Θ instead of just the 

singletons. Shafer (1976) calls this probability mass distribution the basic probability assignment 

function, whereas Smets calls it belief masses (Smets 1998, 1990a, 1990b). We will use Shafer’s 

terminology of probability mass distribution over the superset of Θ. 

Basic Probability Assignment Function (m-values) 

In the present context, the basic probability assignment function represents the strength 

of evidence. For example, suppose that we have received feedback from a survey of the IT 
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employees of a company on whether their work is challenging or not. On average, the employees 

believe that their work is challenging but they do not say this with certainty; they put a high level 

of comfort, say 0.85, on a scale 0 – 1.0 that their work is challenging. But, they do not say that 

their work is not challenging. This response can be represented through the basic probability 

function, m-values1, on the frame, {‘yesCW’, ‘noCW’}, of the variable ‘Challenging Work (CW)’ 

as: m(yesCW) = 0.85, m(noCW) = 0, and m({yesCW, noCW}) = 0.15. These values imply that the 

evidence suggests that the work is challenging to a degree 0.85, it is not challenging to a degree 

zero (there is no evidence in support of the negation), and it is undecided to a degree 0.15. 

Mathematically, the basic probability assignment function represents the distribution of 

probability masses over the superset of the frame, Θ. In other words, probability masses are 

assigned to all the singletons, all subsets of two elements, three elements, and so on, to the entire 

frame. Traditionally, these probability masses are represented in terms of m-values and the sum 

of all these m-values equals one, i.e., 
B

m(B) 1
⊆Θ

=∑ , where B represents a subset of elements of 

frame Θ. The m-value for the empty set is zero, i.e., m(∅) = 0. 

In addition to the basic probability assignment function, i.e., m-values, we have one other 

function, Belief function, represented by Bel(.), that is of interest in the present discussion. As 

defined below, Bel(A), determines the degree to which we believe, based on the evidence, that A 

is true. This function is discussed further below.  

                                                 
1 See the following references for more discussion on belief functions and their applications: Bovee et. al., 2003; 
Srivastava, 1993; Srivastava & Datta, 2002; Srivastava & Liu, 2003; and Srivastava & Mock, 2000. 
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Belief Functions 

The function, Bel(B), defines the belief in B, a subset of elements of frame  Θ, that it is 

true, and is equal to m(B) plus the sum of all of the m-values for the set of elements contained in 

B, i.e., 
C B

Bel(B) = m(C)
⊆
∑ . Let us consider the example described earlier to illustrate the 

definition. Based on the Survey Results, we have 0.85 level of belief that the employees have 

challenging work, zero belief that the employees do not have challenging work. This evidence 

can be mapped in the following belief functions by using the above definition:   

Bel(yesCW) = m(yesCW) = 0.85, 

Bel(noCW) = m(noCW) = 0.0, 

Bel({yesCW, noCW}) = m(yesCW) + m(noCW) + m({yesCW, noCW}) 

                                 = 0.85 + 0.0 + 0.15 = 1.0. 

The above belief values imply that we have direct evidence from surveying the 

employees that the work is challenging to a degree 0.85, no belief that the work is challenging, 

and the belief that the work is either challenging or not challenging is 1.0. Note that in our 

example there is no state or element contained in ‘yesCW’ or ‘noCW’. Thus, m-values and Bel(.) 

for these elements are the same. 

Dempster’s Rule of Combination 

Dempster’s rule of combination is similar to Bayes’ rule in probability theory. It is used 

to combine various independent items of evidence pertaining to a variable or a frame of 

discernment. As mentioned earlier, the strength of evidence is expressed in terms of m-values. 
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Thus, if we have two independent items of evidence pertaining to a given variable, i.e., we have 

two sets of m-values for the same variable then the combined m-values are obtained by using 

Dempster’s rule. For a simple case2 of two items of evidence pertaining to a frame Θ, Dempster's 

rule of combination is expressed as: 

         

-1
1 2i j

i,j
B B =Bi j

m(B) = K m (B )m (B ),.
∩

∑  

where m(B) represents the strength of the combined evidence and m1 and m2 represent the 

individual strengths of the two items of evidence. In other words, m(B) is the resultant m-value 

for the subset B of the frame Θ, m1 and m2 are the two sets of m-values associated with the two 

independent items of evidence. K is the renormalization constant given by: 

         
1 2i j

i,j
B B =i j

K = 1 - m (B )m (B ).

∩ ∅

∑  

The second term in K represents the conflict between the two items of evidence. When K 

= 0, i.e., when the two items of evidence totally conflict with each other, these two items of 

evidence are not combinable.  

A simple interpretation of Dempster’s rule is that the combined m-value for a set of 

elements B is equal to the sum of the product of the two sets of m-values (from each item of 

evidence), m1(B1) and m2(B2), such that the intersection of B1 and B2 is equal to B and 

renormalize the m-values to add to one by eliminating the conflicts.  

                                                 
2 For three independent items of evidence, Dempster’s rules can be written as: 

                  

-1
1 i 2 j 3 k 1 i 2 j 3 k

i,j,k i,j,k
B B B =B B B B =i j k i j k

m(B) = K m (B )m (B )m (B ),  where K = 1 - m (B )m (B )m (B ).
∩ ∩ ∩ ∩ ∅

∑ ∑ . 

One can easily generalize the above formula for n independent items of evidence (see Shafer 1976 for details). 
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Let us consider an example to illustrate Dempster’s rule. Consider that we have the 

following sets of m-values from two independent items of evidence pertaining to a variable, say 

A, with two values, ‘a’, and ‘~a’, representing respectively, that A is true and is not true: 

m1(a) = 0.4, m1(~a) = 0.1, m1({a, ~a}) = 0.5, 

m2(a) = 0.6, m2(~a) = 0.2, m2({a, ~a}) = 0.2. 

As mentioned earlier, the general formula of Dempster’s rule yields the combines m-

value for an element or a set of elements of the frame of discernment by multiplying the two sets 

of m-values such that the intersection of their respective arguments is equal to the element or set 

of elements desired in the combined m-value, and by eliminating the conflicts and renormalizing 

the resulting m-values such that the resulting m-values add to one.  This reasoning yields the 

following expressions as a result of Dempster’s rule for binary variables: 

m(a) = K
-1

[m1(a)m2(a) + m1(a)m2({a,~a}) + m1({a,~a})m2(a)], 

m(~a) = K
-1

[m1(~a)m2(~a) + m1(~a)m2({a,~ a}) + m1({a,~ a})m2(~a)], 

m({a,~ a}) = K
-1

m1({a,~ a})m2({a,~ a}), 

and 

K = 1 – [m1(a)m2(~a) + m1(~a)m2(a)]. 

As we can see above, m(a) is the result of the multiplication of the two sets of m-values such that 

the intersection of their arguments is equal to ‘a’ and the renormalization constant, K, is equal to 

one minus the conflict terms. Similarly m(~a) and m({a,~a}) are the results of multiplying two 

sets of m-values such that the intersection of their arguments is equal to ‘~a’ and ({a,~a}), 

respectively. 

Substituting the values for the two m-values, we obtain: 



 
 

12 

K = 1 – [0.4x0.2 + 0.1x0.6] = 0.86, 

m(a) = [0.4x0.6 + 0.4x0.2 + 0.5x0.6]/0.86 = 0.72093, 

m(~a) = [0.1x0.2 + 0.1x0.2 + 0.5x0.2]/0.86 = 0.16279, 

m({a,~a}) = 0.5x0.2/0.86 = 0.11628. 

Thus, the total beliefs after combining both items of evidence are given by 

Bel(a) = m(a) = 0.72093,  Bel(~a) = m(~a) = 0.16279, 

and 

Bel({a,~a}) = m(a) + m(~a) + m({a,~a}) = 0.72093 + 0.16279 + 0.11628 = 1.0. 

The above values of beliefs in ‘a’ and ‘~a’ represent the combined beliefs from two items of 

evidence. Belief that ‘a’ is true from the first item of evidence is 0.4; from the second item of 

evidence it is 0.6, where as the combined belief that ‘a’ is true based on the two items of 

evidence is 0.72093; a stronger belief as a result of the combination.  The combined belief would 

have been much stronger if we did not have the conflict. 

IV.  Evidential Reasoning Approach 

Strat (1984) and Pearl (1990) have used the term “evidential reasoning” for decision 

making under uncertainty. Under this approach one needs to develop an evidential diagram (as 

shown in Figure 4 in the next section, see also Srivastava & Mock, 2000 for other examples) 

containing all the variables involved in the decision problem with their interrelationships and the 

items of evidence pertaining to those variables. Once the evidential diagram is completed, the 

decision maker can determine the impact of a given variable on all other variables in the diagram 

by combining the knowledge about the variables. In other words, under the evidential reasoning 

approach, if we have knowledge about one or more variables in the evidential diagram, then we 

can make predictions about the other variables in the diagram given that we know how these 
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variables are interrelated. Usually, the knowledge about the states of these variables is only 

partial, i.e., there is uncertainty associated with what we know about these variables. As 

mentioned earlier, we use Dempster-Shafer theory of belief functions to model these 

uncertainties. 

In the present case, variables in the evidential diagram represent the ‘constructs’ of the 

model obtained through the Revealed Causal Mapping (RCM) process, and the interrelationships 

represent how one variable or multiple of variables influence a given variable. Such relationships 

among the variables can be defined either in terms of categorical relationships such as, ‘AND’, 

and ‘OR’, or in terms of uncertain relationships, such as a combination of ‘AND’ and ‘OR’, or 

some other relationships as discussed in the next section.  

In order to illustrate the evidential reasoning approach, let us first construct an evidential 

diagram using a simple hypothetical decision problem involving three variables, X, Y, and Z (see 

Figure 1). Let us assume for simplicity that these variables are binary, i.e., each variable has two 

values: either the variable is true (x, y, and z) or false (~x, ~y, and ~z). Also, let us assume that 

variable Z is related to X and Y through the ‘AND’ relationship. This relationship implies that Z 

is true (z) if and only if X is true (x) and Y is true (y), but it is false (~z) when either X is true (x) 

and Y is false (~y), or X is false (~x) and Y is true (y), or both X and Y are false (~x, ~y). Now 

we draw a diagram consisting of the three variables, X, Y, and Z, represented by rounded boxes 

and connect them with a relational node represented by the hexagonal box. Further, connect each 

variable with the corresponding items of evidence represented by rectangular boxes. Figure 1 

depicts the evidential diagram for the above case. 
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Figure 1: Example of an Evidential Network* 

 

 

 
 

 
*Rounded boxes represent variables (constructs), hexagonal box 
represents a relationship, and rectangular boxes represent items of 
evidence pertinent to the variables they are connected. 

As mentioned earlier, an evidential reasoning approach helps us infer about one variable 

given what we know about the other variables in the evidential diagram. For example, in Figure 

1, we can predict about the state of Z given what we know about the states of X and Y, and the 

relationship among them. Under the belief-function framework, this knowledge is expressed in 

terms of m-values. For example, knowledge about X and Y, based on the corresponding 

evidence, can be expressed in terms of m-values3, mX at X, and mY at Y, as:  mX(x) = 0.6, 

mX(~x) = 0.2, mX({x,~x}) = 0.2, and mY(y) = 0.7, mY(~y) = 0, mY({y,~y}) = 0.3. The first set of 

m-values suggests that the evidence relevant to X provides 0.6 level of support that X is true, i.e., 

mX(x) = 0.6, 0.2 level of support that X is not true, i.e., mX(~x) = 0.2, and 0.2 level of support 

undecided, i.e., mX({x,~x}) = 0.2. One can provide a similar interpretation of the m-values for Y. 

The ‘AND’ relationship between X and Y, and Z can be expressed in terms of the following m-

values: m({xyz, x~y~z, ~xy~z, ~x~y~z}) = 1.0. This relationship implies that z is true if and 

only if x is true and y is true, and it is false when either x is true and ~y is true, ~x is true and y is 

true, or ~x and ~y are true. 

X: (x, ~x) 

Y: (y, ~y) 

Z: (z, ~z) 

Evidence for Z 

Evidence for Y 

Evidence for X 

 AND 
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Based on the knowledge about X and Y above and the relationship of Z with X and Y, we 

can now make inferences about Z. This process consists of three steps which are described in 

Appendix C in detail. Basically, Step 1 involves propagating4 beliefs or m-values from X and Y 

variables to the relational node ‘AND’ through vacuous5 extension. This process yields two sets 

of m-values at ‘AND’, one from X and the other from Y: mAND←X and mAND←Y (See Table 2 for 

definitions of symbols).  Also, we already have one set of m-values, mAND, at the relational node 

‘AND’.  Step 2 involves combining the three sets of m-values at the ‘AND’ node using 

Demspter’s rule. Step 3 involves propagating the resulting m-values from the ‘AND’ node to 

variable Z by marginalization6. This process yields mZ←AND. These m-values are then combined 

with the m-values at Z, mZ, obtained from the evidence pertaining to Z. The resultant m-values 

will provide the belief values whether Z is true or not true. As mentioned earlier, he details of the 

propagation process7 are discussed in Appendix C through a numerical example. 

                                                                                                                                                             
3 The argument of m-function represents the state for which the value is assigned and the subscript describes the 
evidence from which the value is derived. For example, m

X
(x) = 0.6 represents 0.6 level of support for ‘x’ from an 

item of evidence pertaining to the variable X. 
4 Propagation is the process by which m-values on a variable or a set of variables are moved (mapped) to another 
variable or a set of variables.  For example, m-values from variable X in Figure 1 can be propagated to the relational 
variable ‘AND’ that consist of three variables, X, Y, and Z. 
5 Vacuous extension is the process through which m-values on a smaller frame are extended to a larger frame. For 
example, m(x) when vacuously extended to the joint space of X and Y, i.e., the frame {xy, x~y, ~xy, ~x~y}, yields 
m(x) = m({xy, x~y}). 
6 Marginalization of m-values is opposite to the vacuous extension. This process is similar to marginalization in 
probability theory; it involves eliminating all the unwanted variables by summing the m-values over the unwanted 
variables. For example, assume that we have the following m-values on the joint space of X and Y, Θ

X,Y
 = {xy, x~y, 

~xy, ~x~y}: m({xy}) = 0.1, m({xy, x~y}) = 0.6, and m({xy, x~y, ~xy, ~x~y}) = 0.3. The marginalized m-values 
onto the space of X variable are: m({x}) = 0.1 + 0.6 = 0.7, and m({x, ~x}) = 0.3. Similarly, the marginalized m-
values onto the Y space are: m({y}) = 0.1, m({y, ~y}) = 0.9. 
7 Through this example we are illustrating the details of the propagation process of beliefs or m-values through a tree 
of variables as this is what is needed in our model of IT job satisfaction obtained through the RCM process. A 
discussion on the details of the propagation of beliefs through a network of variables is beyond the scope of this 
chapter. Interested readers should see Srivastava (1995) and Shenoy and Shafer (1990) for this kind of propagation. 
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Table 2: List of Symbols related to m-values used in the Propagation Process in Figure 1. 

Symbol Description 
x, y, and z These symbols, respectively, represent that the variables X, Y, and Z, are true. 

~x, ~y, and ~z These symbols, respectively, represent that the variables X, Y, and Z, are not true. 
Θ

X
={x,~x} The frame of X which represents all the possible values of X. 

Θ
Y
={y,~y} The frame of Y which represents all the possible values of Y. 

Θ
AND

= {xyz, x~y~z, 
~xy~z, ~x~y~z} 

The frame of ‘AND’ relationship. The elements in the frame are the only possible 
values under the logical ‘AND’ relationship between Z, and X and Y. 

m
X
({.}) m-value for the element or the set of elements {x,~x} in the argument for variable X. 

m
Y
({.}) m-value for the element or the set of elements {y,~y} in the argument for variable Y. 

m
AND

({.}) m-value for the elements in the argument for the ‘AND’ relationship. 
m

AND←X({.}) m-value for the element or elements in the argument propagated to ‘AND’ 
relationship from variable X. 

m
AND←Y({.}) m-value for the element or elements in the argument propagated to ‘AND’ 

relationship from variable Y. 
m

Z←AND
({.}) m-values propagated from ‘AND’ to variable Z in Figure 1. 

 

Modeling Uncertain Relationships among Variables 

Srivastava and Lu (2002) have discussed a general approach to modeling various 

relationships under belief functions. We will use their approach to model the assumed 

relationships among various variables in Figure 4. As given earlier, the ‘AND’ relationship 

among X, Y and Z, under belief functions can be expressed in terms of the following m-value: 

mAND({xyz, x~y~z, ~xy~z, ~x~y~z}) = 1.0. 

The argument of m-value above determines the possible states of the joint space defining the 

‘AND’ relationship. Similarly, the ‘OR’ relationship can be expressed as: 

mOR({xyz, x~yz, ~xyz, ~x~y~z}) = 1.0. 

A relationship representing 60% of ‘AND’ and 40% of ‘OR’ can be expressed as: 

mR({xyz, x~y~z, ~xy~z, ~x~y~z}) = 0.6, and mR({xyz, x~yz, ~xyz, ~x~y~z}) = 0.4, 

where the subscript R stands for the relationship. 
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Propagation of Beliefs in a Network of Variables 

The evidential diagram becomes a network if one item of evidence pertains to two or 

more variables in the diagram. Such a diagram is depicted in Figure 2 for a simple case of three 

variables. Even though the evidential diagram of IT Job Satisfaction model obtained through the 

RCM approach in the current study is not a network (see Figure 4), we describe the approach of 

propagating beliefs or m-values through a network of variables for completeness. The 

propagation of m-values through a network is much more complex and thus we will not go into 

the details of the propagation process in this chapter. Instead, we will briefly describe the process 

and advise interested readers to refer to Shenoy and Shafer (1990) for the details. Also, 

Srivastava (1995) provides a step-by-step description of the process by discussing an auditing 

example. 

Figure 2: Evidential Diagram as a Network 

 

 

 

 

Basically, the propagation of m-values (i.e., beliefs) through a network of variables 

involves the following steps. First, the decision maker draws the evidential diagram with all the 

pertinent variables and their interrelationships in the problem along with the related items of 

evidence.  This step is similar to creating an evidential diagram for the case of a tree type 

diagram.  Second, the decision maker identifies the clusters of variables over which m-values are 

either obtained from the items of evidence in the evidential diagram or defined from the assumed 

relationships among the variables. For example, in Figure 2, the four items of evidence yield the 
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following clusters of variables: {X}, {Y}, {Z}, {X,Y}, and the ‘AND’ relationship defines m-

value for the cluster {X,Y,Z}. Thus, in Figure 2, we have the following clusters of variables over 

which m-values are defined: {X}, {Y}, {Z}, {X,Y}, and {X,Y,Z}. 

The third step in the propagation process in a network is to draw a Markov8 tree based on 

the identified clusters of variables as above. This step is not needed for a tree type evidential 

diagram. One can propagate m-values through a tree type evidential diagram without converting 

the diagram to a Markov tree. The fourth step is to propagate m-values through the Markov tree 

by vacuously extending and marginalizing the m-values from all the nodes in the Markov tree to 

the node of interest. The basic approach to vacuous extension and marginalization remains the 

same as described earlier through footnotes 5 and 6. 

Since the process of propagating m-values in a network becomes computationally quite 

complex, several software packages have been developed to facilitate this process (see e.g., 

Shafer, et al., 1988; Zarley, et al., 1988; and Saffiotti & Umkehrer, 1991). The software 

developed by Zarley et al (1988) and Saffiotti & Umkehrer (1991) require programming the 

evidential diagram in LISP. Also, these software programs do not provide a friendly user 

interfaces. On the other hand the software, ‘Auditor Assistant’, developed by Shafer et al. (1988) 

has a friendly user interface and does not require any programming language to draw the 

evidential diagram. In fact, one can draw the evidential diagram using the graphic capabilities of 

the software. The evidential diagram drawn by using ‘Auditor Assistant’ looks very similar to 

                                                 
8 A Markov tree is characterized by a set of nodes N and a set of edges E where each edge is a two-element subset of 
N such that (Srivastava, 1995; see also, Shenoy, 1991): 

• (N,E) is a tree. 
• If N and N' are two distinct nodes in N, and {N, N'} is an edge, i.e., ∈{N,N'} E , then N∩N’≠ ∅.  
• If N and N' are distinct nodes of N, and X is a variable in both N and N', then X is in every node on the 

path from N to N'.  
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the one drawn by hand. The internal engine of the program converts this diagram into a Markov 

tree and propagates m-values once they are entered in the program. The program can be 

instructed to evaluate the network which then provides the aggregated m-values at each cluster of 

variables in the network. One can then analyze how one variable impacts another variable by 

making changes in the input m-values in the network. 

Since the evidential diagram in our case is a simple tree, it is pretty straight forward to 

propagate m-values through such a tree as described Appendix C. In order to analyze the model 

in Figure 4, we develop a spreadsheet program that combines different m-values at each variable 

and then propagates them through the tree to the desired variable. This process is elaborated in 

Section VI. 

V.  An Illustration of Evidential Reasoning: Causal Map of IT Job Satisfaction 

Job satisfaction of information technology (IT) workers has been the focus of several 

information systems studies (e.g., Igbaria & Guimaraes, 1993; Gupta, et al., 1992; Thatcher, et 

al., 2003). Organizations want to retain their best IT workers as long as they possess the skills 

necessary to accomplish the job. However, there is growing concern that many long term IT 

employees no longer fit the needs of their employers.    

The general consensus from the research is that job satisfaction is negatively related to 

turnover intention (e.g., Thatcher, et al. 2003). In other words, workers who are highly satisfied 

with their jobs are less likely to contemplate seeking other employment and many unsatisfied 

workers enter the job market. In the current environment of radical role changes (Darais, et al., 

2003) and selectivity in hiring, IT workers within firms are experiencing anxiety and frustration, 

wondering what skills they will need to remain marketable in the future. The current trend with 
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offshoring many IT jobs has exacerbated this problem for many workers.  IT workers with 

traditionally secure positions are not immune to the pressures of this dynamic job environment.  

In the present study, the IT Professional Job Satisfaction Model was developed based on 

83 discovery interviews with IT workers in various job positions including systems analysts, 

programmers, technical specialists, and systems project managers. Table 3 shows the 

demographics for the interview sample.  

Table 3. Interview Sample Demographics. 

Demographic Mean (n=83) SD or Percent 
Number of years experience 
with current project 

5.80 6.10 

Tenure (# of years with the 
organization) 

10.77 8.61 

Age (years) 41.25 9.16 
Gender 
   Female 
   Male 

 
35 
48 

 
42% 
58% 

Education: 
   High School 
   Associates Degree 
   BA/BS 
   MA/MS/MBA 
   Post-Graduate Degree 

 
13 
14 
40 
14 
2 

 
15.7% 
16.9% 
48.2% 
16.8% 
2.4% 

 

These workers were from eight different corporations in a variety of industries (e.g., 

banking and insurance, manufacturing, education, state and local government). They voluntarily 

discussed their opinions on a number of job-related issues, generally focusing on their feelings of 

uncertainty regarding their personal contributions and job security (see the Interview Protocol in 

Appendix B). Interviews were generally 30 – 45 minutes in length and tape recorded, with the 

consent of the participant. Then, the interviews were transcribed and the causal statements were 

highlighted and analyzed according to the RCM technique described in Section II of this chapter. 

The causal map (Figure 3) was created based on the concepts represented in the transcripts.  
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In analyzing the data, one clear finding is that most of the IT personnel interviewed had 

difficulty describing how they fit within the corporate structure. They acknowledged that their 

contributions were important, but they felt they were personally expendable. Several persons 

similarly stated, “I’m just a cog in the wheel.” As many researchers and practitioners have noted 

(e.g., Darais, et al., 2003), in order to survive in the IT field, workers must continue to retrain and 

learn new skills. Therefore, acknowledgement of the need to change is depicted as the first node 

in the IT Professional Job Satisfaction Model (see Figure 3, Item 1). The interviewees indicated 

that skills stagnation often threatened job security. This realistic fear of job loss (Figure 3, Item 

2) is a powerful motivator in pursuing necessary training.  

IT workers in the interviews discussed the importance of seeking out training 

opportunities (Figure 3, Item 3), whether offered by the corporation as in-house training, 

enrollment in formal college courses, or on-line computer-aided learning. These courses might 

entail attaining certification credentials, college credit, or practical experience. According to a 

majority of interviewees, if training is available at the place of work, and offered during work 

hours, employees are more likely to take advantage of the instruction. In contrast, off-hours 

training, to be completed outside of work on one’s personal time, was less attractive to these 

employees. However, there is no guarantee that participation in training courses produces 

adequate knowledge for accomplishing new tasks.  

Beyond merely gaining new knowledge and skills (Figure 3, Item 4), interviewees 

stressed that they must also be able to practice and apply the new skills in a meaningful way 

(Figure 3, Item 5). In other words, they believe that their training must be utilized on work 

projects in order for the new skills to become part of workers’ permanent skill sets. 
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Unfortunately, technical skills are often lost if they are not used soon after the course is 

completed (Radding, 1997).  

Some of the relevant elements of job satisfaction (Figure 3, Item 9) that emerged from 

this study were perceived feedback from supervisors and co-workers (Figure 3, Item 6), 

participation in challenging projects (Figure 3, Item 7), and autonomy within the work setting 

(Figure 3, Item 8). Many IT projects involve teams working together to accomplish defined 

objectives. Direct feedback obtained from supervisors and co-workers (Figure 3, Item 6) 

increases job satisfaction because there is less ambiguity about perceived performance. For 

instance, the interviewees stated that they like to receive continuous feedback in order to 

determine whether they have adequately satisfied the user requirements and specifications during 

systems development.  

Next, challenging projects (Figure 3, Item 7) provide intrinsic motivation for IT workers. 

Interviewees remarked that they were anxious to tackle difficult problems for the basic joy of 

simply discovering new solutions. But, beyond the initial pleasure of design development is the 

pride of successful implementation and user adoption of their creative solutions. These 

accomplishments instill job satisfaction at a deep level for IT problem-solvers. 

Finally, the level of autonomy (Figure 3, Item 8) positively affects job satisfaction 

because most IT employees prefer freedom and independence in determining relevant job-related 

decisions (Ang & Slaughter, 2001; Hackman & Oldham, 1976). According to the interviewees, 

they derive positive affect from exercising autonomy in project completion, resulting in 

increased job satisfaction.  

Table 4 shows evidence used to support the construct measures. For this study, evidence 

was obtained from survey data. The survey was developed as an extension of a study in which 
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the RCM technique was used to develop a model of work identity for IT professionals (Buche, 

2003). Other possible examples of evidence would be additional interviews, observation, 

evaluation of documentation, and reviewing physical artifacts. Some of the elements could be 

gathered from supervisors and secondary sources, triangulating the evidence to analyze the 

model and to predict job satisfaction of IT professionals. 

Figure 3. Information Technology Professional Job Satisfaction Model. 
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Table 4. Variables, Symbols and Respective Sources of Evidence. 

Variable 
(from RCM) 

Symbol Possible 
Values Evidence Source 

(Survey Data) 

Recognition of 
Role Change 

 
 
 
 

RR {yesRR, noRR} 

 
 
 
 

E1 

• In my role I am most valued for 
my technical abilities. 

• My business knowledge is my 
most important contribution to the 
organization. 

• In my organization, I am perceived 
to be a technical expert. 

• I could not be successful this job 
without broad knowledge of the 
business domain. 

Fear of Job 
Loss  
(Job Security) 

 
JT {yesJT, noJT} 

E2.1 
 

E2.2 

• Actual layoffs reported in the firm, 
industry, media 

• Job security.  
Sign Up For 
Training 

 
ST {yesST, noST} E3 

• Availability of training to learn 
new skills. 

Opportunity to 
Gain New 
Skills 

 
GS {yesGS, noGS} E4 

• Opportunities to learn new things 
from my work. 

Opportunity to 
Use New 
Skills 

 
US {yesUS, noUS} E5 

• Opportunities to apply new skills 
in my work. 

Feedback from 
Superiors/Co-
workers 

 
 
 
 

FS 
{yesFS, noFS} 

 
 
 
 

E6 

• My managers or co-workers often 
let me know how well I’m doing 
on my job. 

• I’m frustrated by the fact that my 
supervisor and co-workers almost 
never give me any feedback about 
how well I am doing my work. 

• My supervisor gives me specific 
inputs on how well I am 
performing my responsibilities.  

Challenging 
Work CW {yesCW, noCW} E7 • Stimulating and challenging work. 

Autonomy of 
Work 

 
 
 
 

AW 
{yesAW, noAW} 

 
 
 
 
 

E8 

• I have a lot of autonomy in my job. 
That, is, I decide how to go about 
doing my projects. 

• The job denies me any chance to 
use my personal initiative or 
judgment in carrying out the work. 

• My job gives me considerable 
opportunity for independence and 
freedom in how I do my work. 
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VI.  Conversion of Revealed Causal Map into Evidential Diagram and Belief Propagation 

In this section we first discuss how a revealed causal map can be converted to a belief 

function evidential diagram and then discuss how beliefs can be propagated through this 

evidential diagram. Our example is displayed in Figure 3.  

Conversion of Revealed Causal Map into Evidential Diagram 

The conversion process of revealed causal map into evidential diagram can be described 

in the following five steps: 

1. Identify the main variables (i.e., constructs) in the revealed causal map. 

2. Determine the possible values of these variables (such as, ‘true/false’, or 
‘high/medium/low’). 

3. Determine the relationships among the variables (see the details below). 

4. Connect the variables through the corresponding relationships. 

5. Identify potential items of evidence pertaining to the variables in the diagram and 
connect these items of evidence to the relevant variables. 

The above approach yields the desired evidential diagram for belief-function analysis. In 

Steps 1 and 2, we have identified nine variables (i.e., constructs; see Figure 3) and their 

corresponding categorical values (Table 4). 

Step 3 (Determining the relationships among various variables) is a somewhat difficult 

process. Expert judgments about these relationships must be rendered. For example, the 

relationship R1 defining the relationship between ‘Role Recognition (RR)’ and ‘Job Security 

(JT)’ was extremely difficult to model.  In this case, the survey data provided only information 

on whether the subjects recognize their changing role on the job and did not specify any details 

on how this knowledge might influence ‘Job Security’. For IT personnel, ‘Role Recognition’ 
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might mean that ‘yes’ there is ‘Job Security’, but it also may mean that there is no ‘Job Security’. 

Thus, lacking any other information, we assume, for the present discussion, that when ‘Role 

Recognition’ is yes, ‘Job Security’ is 50% ‘yes’, and 50% ‘no’. However, when there is no 

knowledge about ‘Role Recognition’, there is no knowledge about ‘Job Security’. Such a 

relationship can be expressed in terms of m-values as given below. 

m-values for R1: 

        mR1({(yes RR, yes JT), (no RR, yes JT), (no RR, no JT)}) = 05, 

        mR1({(yes RR, no JT), (no RR, yes JT), (no RR, no JT)}) = 05. 

The above relationship propagates9 50% of mE1(yes RR), the belief on ‘Role Recognition’ 

being ‘yes’ from evidence E1 (Figure 4), to ‘yesJT’ 50% of mE1(yes RR) to ‘noJT’, and 100% of 

mE1(noRR) and mE1({yesRR, noRR}) to ({yesJT, noJT}), as described in the assumed relationship. In 

other words, the m-values propagated from variable ‘Role Recognition (RR)’ to variable ‘Job 

security (JT)’ are given as: 

mJT←RR(yesJT) = 0.5mE1(yesRR), mJT←RR(noJT) = 0.5mE1(yesRR), and 

mJT←RR({yesJT, noJT}) = mE1(noRR) + mE1({yesRR, yesRR}) 

For the relationship R2 we assume the following. On average, a person with the 

knowledge that there is no job security will sign up for job training with 90% belief and a person 

with the knowledge that there is no problem with the job security will not sign up for job training 

with 90% belief. This relationship can be modeled in the following way: 

                                                 
9 As described in Section IV, in order to propagate m-values from ‘RR’ to ‘JT’ through the relationship R1, one 
needs to vacuously extend the m-values from the space of ‘RR’, {yesRR, noRR}, to the space of R1, which is the joint 
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m-values for R2: 

mR2({(yes JT, no ST), (no JT, yes ST)}) = 0.9, and 

mR2({(yes JT, yes ST), (yes JT, no ST), (no JT, yes ST), (no JT, no ST)}) = 0.1. 

Similar to footnote 9, one can easily show the following m-values to be the result of m-

values propagated from variable ‘Job Security (JT)’ to variable ‘Sign up for Job Training (ST)’ 

through the relationship R2: 

mST←JT(yesST) = 0.9mJT(noJT), mST←JT(noST) = 0.9mJT(yesJT), and 

mST←JT({yesST, noST}) = 0.1 + 0.9mJT({yesRR, yesRR}). 

We assumed the following m-values for R3 (see Table 4 for the definitions of the 

symbols): 

m-values for R3: 

mR3({(yes ST, yes US), (no ST, no US)}) = 0.75, and 

mR3({(yes ST, yes US), (yes ST, no US), (no ST, yes US), (no ST, no US)}) = 0.25. 

The above relationship implies that if variable ‘ST’ is ‘yes’, i.e., a person sings up for 

training, then variable ‘US’ will be ‘yes’, i.e., the person will have the opportunity to use the new 

skill, with 0.75 belief and the remaining 0.25 belief is assigned to ignorance. Similarly, the 

relationship implies that if ‘ST’ is ‘no’ then ‘US’ is ‘no’ with belief 0.75, i.e., if one does not 

sign up for job training then he/she will not have the use of new skill with belief 0.75. The 

remaining 0.25 belief represents ignorance. 

                                                                                                                                                             
space of ‘RR’ and ‘JT’, i.e., {(yesRR, yesJT),  (yesRR, noJT), (noRR, yesJT), (noRR, noJT)}, combine the m-values at R1, 
and then marginalize to the space of ‘JT’, {yesJT, noJT}. 
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For the relationship R4, we assume the following m-values: 

m-values for R4: 

mR4({(yesGS, yesUS), (noGS, noUS)}) = 1.0. 

This relationship implies that if ‘GS’ is ‘yes’ then ‘US’ is ‘yes’ with 1.0 belief.  Also, if 

‘GS’ is ‘no’ then ‘US’ is ‘no’ with 1.0 belief.  In other words, if one has the opportunity to gain 

new skills on the job then there is 1.0 belief that there is opportunity to use the new skills. 

Similarly, if there is no opportunity to gain new skills on the job then there is no opportunity to 

use the new skills. 

The relationship R5 relates variables ‘US’, ‘FS’, ‘AW’, and ‘CW’ to the variable ‘Job 

Satisfaction (JS)’. We have assumed the following relative weights, 0.125, 0.125, 0.25, and 0.5, 

respectively, for ‘US’, ‘FS’, ‘AW’, and ‘CW’ when propagating information (m-values) to the 

variable ‘JS’.   

Step 4 simply represents a diagram with all the variables interconnected through the 

assumed relationships (see Figure 4). In Step 5, we identify various items of evidence pertaining 

to different variables and connect them to the corresponding variables. Table 4 provides a list of 

evidence pertaining to the nine variables in Figure 4. Once these items of evidence are connected 

to the corresponding variables, we develop the evidential diagram shown in Figure 4 for the 

analysis.   

Propagation of Beliefs through Evidential Diagram 

In order to propagate information in terms of m-values from all the variables to the 

variable of interest, say, ‘Job Satisfaction (JS)’ in Figure 4, we need to follow the following 

steps. First, gather all the information (m-values) at ‘Role Recognition (RR)’, propagate that 
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information (m-values) to variable ‘Job Security (JT)’ through the relationship R1 by first 

vacuously extending to the space of R1, combining it with the m-values at R1 using Dempster’s 

rule, and then marginalizing the resulting m-values to the space of ‘JT’. Combine this 

information (m-values) with the m-values at ‘JT’ obtained from evidence E2.1 and E2.2, again 

using Dempster’s rule. Next step is to propagate the resulting m-values at ‘JT’ through R2 to the 

variable ‘Sign up for Training to Gain New Skills (ST)’. This is achieved again by vacuously 

extending the total m-values at ‘JT’ to the space of R2, combining them with the m-values at R2 

using Dempster’s rule, and then marginalizing them to the space of variable ‘ST’.  Combine this 

information (m-values) with the m-values obtained from evidence E3 for ‘ST’. The resulting m-

values are then propagated to the variable ‘Opportunity to use New Skills (US)’. Combine these 

m-values with the m-values obtained from the variable ‘Opportunity to Gain New Skills on the 

Job (GS)’ and the m-values from evidence E5 for ‘US’. 

In the final step, we need to propagate all the m-values from the four variables, ‘US’, 

‘FS’, ‘AW’, and ‘CW’ through the relationship R5 to the variable ‘Job Satisfaction (JS)’ by 

vacuously extending the respective m-values to the space of R5, combine these m-values with 

the m-values defining R5 and then marginalize them to the space of ‘Job Satisfaction’. The 

marginalized m-values on ‘Job Satisfaction (JS)’ can be written as: 

mJS(yesJS) = 0.125mUS(yesUS) + 0.125mFS(yesFS) + 0.25mAW(yesAW) + 0.5mCW(yesCW). 

mJS(noJS) = 0.125mUS(noUS) + 0.125mFS(noFS) + 0.25mAW(noAW) + 0.5mCW(noCW). 

mJS({yesJS, noJS}) = 1 - mJS(yesJS) - mJS(noJS). 

These m-values provide the impact of all the variables in the evidential diagram in Figure 4. 
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Given that the evidential diagram in Figure 4 is a tree, the propagation of m-values from 

various variables to the variable of interest, ‘Job Satisfaction’ is much easier than propagation in 

a network of variables. We programmed the logic of vacuous extension, marginalization, and 

Dempster’s rule of combination in a spreadsheet program in MS Excel, which then was used to 

perform various analyses as discussed in the next section. 

  



 
 

31 

Figure 4: Evidential Diagram* of the Causal Map in Figure 3 
 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

*The oval shaped boxes represent variables and the rectangular boxes represent items of 
evidence. The numbers in a rectangular box represents the level of support for and against the 
variable it is connected to. These numbers were determined from the Survey Results except 
for E2.1 which was determined from the industry data. 

3. Sign Up For  Training to Gain 
New Skills (ST)  {yesST, noST} 

4. Opportunity to Gain New Skills 
on the Job (GS) {yesGS, noGS} 

1. Recognition of Tech. & Bus. Role 
Change (RR) {yesRR, noRR} 

2. Job Security (JT) 
{yesJT, noJT} 

5. Opportunity to use New 
Skills (US) {yesUS, noUS} 

Job Satisfaction (JS) 
{yesJS, noJS} 

7. Challenging work (CW) 
{yesCW, noCW} 

6. Feedback from Superiors/ 
Co-workers (FS) {yesFS, noFS} 

8. Autonomy of Work (AW) 
{yesAW, noAW} 

E1. Survey Results: Q51, Q52, 
Q53, Q55  (0.63, 0.37)

R1 E2.1: Layoffs reported – in the firm, 
industry, general public (0.27, 0.73)

E3: Survey Results, Q34 
(0.79, 0.0) 

R4 R3 

E4: Survey Results, Q30 
(0.84, 0.0) 

R2 

R5 

E2.2: Survey Results, Q28 
(0.83, 0.0) 

E6: Survey Results, Q6, Q14-Q22 
(0.66, 0.34) 

E5: Survey Results, Q35 
 (0.81, 0.0) 

E8: Survey Results, Q2, Q16, Q20 
 (0.77, 0.23) 

E7: Survey Results, Q26 
(0.81, 0.0) 
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VII. Decision Analysis of Causal Map Using Belief Functions 

In this section, we discuss how one can analyze the impact of one variable on the other 

variables in the network given in Figure 4.  Such an analysis allows the decision maker to isolate 

an independent variable while holding the rest of the variables in the model constant.  In this 

example, the overall belief in job satisfaction is 0.803 given the inputs from the Survey Results 

and industry data. The above value implies that based on the subjects responses, on average, 

employees are satisfied with their jobs in the environment surveyed with 0.803 level of belief. In 

order to investigate the impact of a number of variables on the level of job satisfaction, we use a 

range of possible responses (0 to 1.0) for the variables while keeping the inputs from other items 

of evidence fixed at values obtained from the survey as given in the respective figures. 

First, we investigate the impact of ‘Job Security’ on ‘Job Satisfaction’.  We vary the input 

belief from evidence E2.2 for the negation of ‘Job Security’ from 0 to 1.0, keeping the rest of 

inputs fixed. As seen in Figure 5, the impact of ‘No Job Security’ is pretty severe. As the belief 

in no job security increases the belief in job satisfaction decreases with increasing rate. In other 

words, if an employee sees strong evidence in support of ‘no job security’ then he/she will have 

very low job satisfaction.  
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Figure 5: Belief in Job Satisfaction versus Belief in No Job Security*.  
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The second sensitivity analysis is conducted on the impact of having an opportunity to 

use new skills on the job.  This analysis reveals that the opportunity to use new skills has a 

significant positive impact on ‘Job Satisfaction’ as seen from Figure 6. As the belief in 

opportunity to use new skills increases, the belief in job satisfaction increases. We find an 8.5% 

increase in job satisfaction over the range from 0 – 1.0 for belief in opportunity to use new skills.  

This impact is linear, unlike the previous case. 
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Figure 6: Belief in Job Satisfaction versus Belief in Opportunity to use New Skills*. 
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 The third variable analyzed is ‘Feedback from Supervisors/Co-workers’.  As shown in 

Figure 7, the results demonstrate a substantial positive impact of feedback on the job satisfaction.  

In particular, job satisfaction increases about 19% as we progress from the lower to higher levels 

of perceived feedback.  It is obvious that feedback is a powerful variable in predicting job 

satisfaction. 
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Figure 7: Belief in Job Satisfaction versus Belief in Feedback from Supervisors 
and Co-workers*. 
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Next, we conduct a sensitivity analysis with the independent variable, ‘Challenging 

Work’.  ‘Job Satisfaction’ was extremely sensitive to increases in the perceived level of 

challenging work.  From no belief that the job is challenging to the higher range of belief, 1.0, 

the model indicates that the belief in job satisfaction moves from 0.388 to 0.838; a 129% 

increase as seen in Figure 8.  These results indicate that challenging work is the most powerful 

variable in the model in the prediction of job satisfaction. 
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Figure 8: Belief in Job Satisfaction versus Belief in Challenging Work*. 
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Finally, a sensitivity analysis was conducted on ‘Autonomy of Work’.  The results 

indicate that ‘Autonomy of Work’ has a significant impact on the dependent variable, ‘Job 

Satisfaction’.  Job satisfaction was found to be very sensitive to autonomy.  As the perceived 

autonomy increases from 0 to 1.0, job satisfaction improves from 60% to 85%, an increase of 

41.6%.  These results are presented in Figure 9. 
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Figure 9: Belief in Job Satisfaction versus Belief in Autonomy of Work*.  
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These sensitivity analyses have shown the impact on job satisfaction from a broad range 

of variables and their corresponding beliefs.  However, we do want to point out that the 

interrelationships among the intermediate variables and the relative weights assigned to 

‘Opportunity to use New Skills’, ‘Feedback from Supervisors and Co-Workers, ‘Challenging 

Work’, and ‘Autonomy of Work’, have direct impact on the results for the dependent variable, 

‘Job Satisfaction’.  

In summary, the above analysis provides an example of how an evidential reasoning 

approach under Dempster-Shafer theory of belief functions can be used to determine the impact 

on a given construct or constructs of other constructs in a revealed causal map. It should be noted 

that a revealed causal map of a decision problem is only a static model while an evidential 
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diagram of a revealed causal map provides a dynamic model for analyzing the behaviors of 

various constructs under different conditions. 

VIII.  Conclusions and Future Directions for Research 

In this chapter we have demonstrated the use of evidential reasoning approach under 

Dempster-Shafer (D-S) theory of belief functions to analyze revealed causal maps. As an 

example, we used a simplified causal map obtained through a Revealed Causal Mapping (RCM) 

technique where the participants were from information technology (IT) organizations who 

provided the concepts to describe the target phenomenon of ‘Job Satisfaction’. They also 

identified the associations between the concepts. After creating the causal map of the problem 

being investigated, we developed an evidential diagram. This diagram consists of the variables or 

constructs of the causal map, interconnected to the other variables with some relationships. 

These relationships were defined by the decision maker based on experience. Various items of 

evidence were identified that pertained to different variables. Estimates of the beliefs in terms of 

m-values in support of, or negation of, the variables were made for each item of evidence using 

survey questions (Buche, 2003, particularly Appendix C). These m-values were then propagated 

through the evidential network to obtain the overall belief of ‘Job Satisfaction’.  

To illustrate the usefulness of the evidential reasoning approach under Dempster-Shafer 

theory of belief functions, we performed various sensitivity analyses to determine the impact of 

different variables on ‘Job Satisfaction’. This technique enables researchers to predict the level 

of job satisfaction when given evidence for the other variables in the model. As further validation 

for our findings, our results are directly in line with previous literature on job satisfaction for 

workers in general.  IT personnel are very similar to other professions and vocations.  An 

evidential diagram similar to the one discussed here would be useful in predicting whether a 
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specific work environment would be more or less satisfactory to an employee before joining the 

job. 

In this chapter we have explained the steps necessary to convert revealed causal maps 

into evidential diagrams. The analysis of the transformed diagram is useful in forming 

predictions about human behavior. This technique incorporates the existence of uncertainty in 

the level of belief associated with the evidence. Therefore, the researcher is able to include in the 

diagram personal intuition and confidence based on direct experience. Another advantage of the 

evidential reasoning approach over a revealed causal map is that the former provides a dynamic 

model of a decision problem while the later provides only a static model. As a limitation, the 

evidential reasoning approach may become quite complex especially when variables or 

constructs in the diagram are highly integrated.  For ease of instruction, the example discussed 

herein was fairly simplistic, with primarily linear associations.  
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APPENDIX A.  Concept dictionary with examples. 

Construct Description Example 
Role not valued Company no longer needs certain 

skill sets to support certain roles. 
Generalists such as myself…don’t 
see that role being valued much 

Role change Expectations of workers experience 
transition. 

I got into the analyst role, being the 
leader and doing the coordination 

Fear of job loss Lack of job security. 
 

Anyone would be worried about 
their career 

Sign up for 
training 

Training is provided by a company 
for workers to develop new skills. 

We just look at the classes, sign up 
for them 

Opportunity to 
gain new skills 

Workers are taught new skills in 
classroom or self-paced training. 

Once you learn programming, and 
you have that skill 

Opportunity to use 
new skills 

The job environment provides the 
opportunities for workers to practice 
the skills learned during training. 

Using new skills to make the 
company more competitive  

Feedback form 
superiors and co-
workers 

Direct reaction obtained from 
supervisors and co-workers that 
reduces ambiguity about perceived 
performance.  

The users let me know if the system 
meets their needs 

Challenging 
projects 

Work assignments provide an 
intrinsic motivation because the 
problem-solving aspect takes effort. 

Technical challenges of the job 

Autonomy of 
Work 

Workers have freedom and 
independence in determining 
relevant job-related decisions. 

Nobody really tells me what to do 
or how to do it 

Job satisfaction Affective response to the current job 
environment. 

Pleasant work environment 
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APPENDIX B. Interview Protocol10. 
 
1. What motivates you to come to work here every day? 

2. What is the best thing about your current work environment? 

3. What is the worst thing about your current work environment? 

4. What is the most important thing you contribute to this organization? 

5. What could you contribute to your organization that you currently are unable to contribute? 

6. What barriers keep you from making these (this) contribution? 

7. Where do you realistically see yourself professionally in five years? 

8. Where would you ideally like to see yourself professionally in five years? 

9. What barriers might keep you from your ideal situation? 

10. How much do you like change? 

11. How much do you think the IT field, in general, is changing? 

12. How much do you think the IT field at your company is changing? 

13. How do you feel about this level of change? 

14. How is your organization supporting you in personally making these changes? 

15. What barriers do you see in making these changes? 

16. What is your primary, one year professional goal? 

17. How can your organization help you achieve you goals? 

18. In summary, how do you see yourself fitting into the organization’s “big picture”? 

19. Would you like to add any further comments or observations? 

 
 
 
 
                                                 
10 This semi-structured interview guide was also part of NSF grant proposal and Transition Study research project 
(Nelson, 2000; Buche, 2003). 
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APPENDIX C 

Propagation Illustration in Figure 1 

In this appendix we describe in detail the three steps involved in the propagation of m-

values from variables X and Y in Figure 1 to variable Z. 

Step 1: Propagation of m-values from X and Y to ‘AND’ node: 

In order to propagate m-values from variable X, a smaller node with one variable and the 

frame ΘX={x,~x}, to the ‘AND’ node, a larger node consisting of three variable X, Y, and Z with 

the frame ΘAND= {xyz, x~y~z, ~xy~z, ~x~y~z}, we vacuously extend the m-values at X to the 

space {xyz, x~y~z, ~xy~z, ~x~y~z} defined by the ‘AND’ node . This process yields the 

following non-zero m-values from X to the ‘AND’ node: 

mAND←X({xyz, x~y~z}) = mX(x) = 0.6, 

mAND←X({~xy~z, ~x~y~z}) = mX(~x) = 0.2, 

mAND←X({xyz, x~y~z, ~xy~z, ~x~y~z}) = mX({x, ~x}) = 0.2. 

Similarly, we obtain the following non-zero m-values at the ‘AND’ node when the m-

values from Y are propagated to the ‘AND’ node: 

mAND←Y({xyz, ~xy~z}) = mY(y) = 0.7 

mAND←Y({xyz, x~y~z, ~xy~z, ~x~y~z}) = mY({y,~y}) = 0.3 

Step 2: Combine m-values from X and Y with the m-values at ‘AND’ 

 We have the following set of m-values at the ‘AND’ node; one from X, one from Y, and 

one at the ‘AND’ node defining the relationship. 

m-values from X: 

mAND←X({xyz, x~y~z}) = 0.6, mAND←X({~xy~z, ~x~y~z}) = 0.2, and 
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mAND←X({xyz, x~y~z, ~xy~z, ~x~y~z}) = 0.2. 

m-values from Y: 

mAND←Y({xyz, ~xy~z}) = 0.7, 

mAND←Y({xyz, x~y~z, ~xy~z, ~x~y~z}) = 0.3. 

m-values at the ‘AND’ node: 

mAND({xyz, x~y~z, ~xy~z, ~x~y~z}) = 1.0. 

After we combine the above m-values using Dempster’s rule, we obtain the following m-

values: 

m({xyz}) = m
AND←X

({xyz, x~y~z}).m
AND←Y

({xyz, ~xy~z}). m
AND

({xyz, x~y~z, ~xy~z, ~x~y~z}) 

= 0.6x0.7x1.0 = 0.42, 

m({xyz, x~y~z}) = m
AND←X

({xyz, x~y~z}).m
AND←Y

({xyz, x~y~z, ~xy~z, ~x~y~z}).m
AND

({xyz, x~y~z, ~xy~z, 

~x~y~z})  = 0.6x0.3x1.0 = 0.18, 

m({~xy~z}) = m
AND←X

({~xy~z, ~x~y~z}).m
AND←Y

({xyz, ~xy~z}).m
AND

({xyz, x~y~z, ~xy~z, ~x~y~z}) 

                                                                = 0.2x0.7x1.0 = 0.14, 

m({~xy~z, ~x~y~z}) = m
AND←X

({~xy~z, ~x~y~z}).m
AND←Y

({xyz, x~y~z, ~xy~z, ~x~y~z }).m
AND

({xyz, 

x~y~z, ~xy~z, ~x~y~z}) = 0.2x0.3x1.0 = 0.06, 

m({xyz, ~xy~z}) = m
AND←X

({xyz, x~y~z, ~xy~z, ~x~y~z }).m
AND←Y

({xyz, ~xy~z}).m
AND

({xyz, x~y~z, 

~xy~z, ~x~y~z}) = 0.2x0.7x1.0 = 0.14, 

m({xyz, x~y~z, ~xy~z, ~x~y~z}) = m
AND←X

({xyz, x~y~z, ~xy~z, ~x~y~z }).m
AND←Y

({xyz, x~y~z, ~xy~z, 

~x~y~z }).m
AND

({xyz, x~y~z, ~xy~z, ~x~y~z }) = 0.2x0.3x1.0 = 0.06. 

The above m-values are propagated to variable Z by marginalizing them to Z as described 

below. 
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Step 3: Propagate m-values from ‘AND’ node to Z 

The third step deals with propagating beliefs or m-values from ‘AND’ node to variable Z. 

Since the “AND’ is a bigger node consisting of three variables, X, Y, and Z, the m-values have 

to be marginalized to variable Z. As discussed in Footnote 6, marginalization of belief functions 

or m-values is similar to marginalization of probabilities; the unwanted variables are eliminated 

by summing the m-values over the variables. We obtain the following m-values on variable Z as 

a result of propagation of m-values from X and Y through the relationship ‘AND’ by 

marginalization of m-values at the ‘AND’ node: 

m
Z←AND

({z}) = m({xyz}) = 0.42, 

m
Z←AND

({~z}) = m({~xy~z}) + m({~xy~z, ~x~y~z}) = 0.14 + 0.06 = 0.20, 

m
Z←AND

({z,~z}) = m({xyz, x~y~z}) + m({xyz, ~xy~z}) + m({xyz, x~y~z, ~xy~z, ~x~y~z}) 

= 0.18+ 0.14 + 0.06 = 0.38. 

This completes the process. We now know that belief that Z is true is 0.42 (i.e., Bel(z) = 

0.42), given that we know that X is true with belief 0.6 and Y is true with belief 0.7. Similarly, 

we know that Z is not true with belief 0.20, i.e., Bel(~z) = 0.20, given the knowledge about X 

and Y expressed in terms of the following m-values: mX(x) = 0.6, mX(~x) = 0.2, mX({x,~x}) = 

0.2, and mY(y) = 0.7, mY(~y) = 0, mY({y,~y}) = 0.3. 

 


